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Semiclassical approximation for a nonlinear oscillator with dissipation
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An S-matrix approach is developed for the chaotic dynamics of a nonlinear oscillator with dissipation. The
guantum-classical crossover is studied in the framework of the semiclassical expansionSandtex. An
analytical expression for the breaking time, which is the Ehrenfest time for the dissipative system, is obtained.
A correlation function of thes-matrix elements is studied as well.
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|. INTRODUCTION H=hoa'a+hi’u@a)’-fic@" +a)st). (1)

We consider here the semiclassical dynamics of a nonlinThe creation and annihilation operators have the commuta-
ear oscillator with dissipation. The main objective is to findtion rule[a,a’]=1. The complex frequenay,=Q-iy/2 de-
the breaking time of the quantum-classical crossover for thgermines the effective frequency=[0?++2/4]¥2 in the
dissipative system. In the absence of dissipation, the bfea'frresence of a finite width of the levelg2, andu is the
ing time—namely, the Ehrenfest time—has been follljdo  nonlinearity. The perturbation is a train éffunctions y(t)
scale logarithmically with respect to the Planck constant =37 __ 8(t-nT), which is characterized by the amplitude

7=(1/A)In(lo/h), wherelo is a characteristic action anll 54 the period. The evolution of the wave function is gov-
is a Lyapunov exponent. It characterizes the exact classicajsneq by the quantum map

to-quantum correspondence between the Hamiltonian equa-
tion of motion and the Ehrenfest ongs-4]. The renewed Y+ T)=UT)V(), (2
interest in this time scale is related to the extensive studies of
the chaotic scattering in cavitig§] of the Loschmidt echo where the evolution operatd#(T) over the periodT de-
[7] and of the observation of an essential deviation from thescribes a free dissipative motion and then a kick. Since the
logarithmic scaling for systems with phase space structuredecay operator commutes with the free motion one, the dis-
[8,9]. The nonlinear oscillator is explored to study the sipation is applied first for sake of convenience of the nota-
guantum-classical corresponden¢2-5,10,11 since the tion. Therefore, the evolution operator is given by a product
Ehrenfest time scale was originally introduced[&]. This  of the unitary evolution operatd}(T) and the decay operator
time describes a fagexponential growth of quantum cor- B of the form
rections to the classical dynamics due to chaos. In the pres- ~
ence of dissipation the breaking time differs from since UT) =U=UB= ge@+a)griloTalarh@a)?|g-yTaa/2. (3)
the classical dissipation changes the local instability of tra-
jectories. The breaking time,” for a dissipative web map Here the dimensionless semiclassical parametetuT is
Eas been ?btalne[d)]thby c-rt:umb?r E)r?JecSon_ Of_IEue Heisen- I(?‘i oduced. In what follows this parameter is smhkg 1. To

€rg equations on the coherent stales basis. The Same reSilqine the chaotic dynamics of an open system it is neces-
has been obtained {d2] by a different method in the frame- sary to construct aB matrix. To this end we close the system

. . . . (d)
work of a density matrix description. At timg”, the quan- by means of the complementary conditions with an incident

tum qorrections_are of the order of 1 and de_stroy(tkmnb wave ¢._(t) and an outgoing wave, (). Therefore, the quan-
classical behavior of the system. The subject of quantury, . map(2) takes the new fornjil5,16
n 1

dissipative chaos grew out of the the pioneering work o

dissipative quantum mapd3], and various aspects of the P(t+T) W (1) U UW,\ [ Pt
extensive studies on quantum dissipative chaos are reflected < ) = ( ) = ( )( ) (4)
@4(1) ¢-(1) W, & /\o-(1)

in recent reviewg14] as well.
We show here, in the framework of &matrix approach whereV is a unitary matrix:)V"V=1. The operatorsV;, W,
and S are determined from dissipation by solving the

for the chaotic dynamics of the nonlinear oscillator with a
dissipation ratey, that the breaking time(hd) depends essen- Schradinger equation on the peridd
tially on the ratio between the dissipation ratand the local
instability characterized by the Lyapunov expondnt i [T+0 -
Vt+T)=UP(t) - %f US=t)Wy(s—T)p_(s—T)ds.
t+0
II. S MATRIX (5)

The Hamiltonian of the system can be written in the non-The operator which makes the system closed is taken in the
Hermitian form form
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o0 t
Wyt =W, X &(t-nT). u(t) = EX‘p{ ol f i drlw,a'a+fiu(a'a)’ - esr(n)(@’ + a)]}
n=—so

After the Fourier transform with respect to time we obtain (13)
that the quantum ma@) takes the form on the basiga) can be calculated analytically in the frame-

) work of the semiclassical approximatidd,5]. Here éxp

&ETUW(E) = UNE) - I—UW1¢>-(E), meansT ordering. Applying the Stratonovich-Hubbard trans-
h formation [19] under theT ordering, one obtains, for the

nonlinear term in Eq(13),

¢+(E) = Wol(E) + Sy¢-(E). (6) t
axol —i T4)2
A relation between the incident and outgoing waves is deter- exp 'ﬁ'“TJO dr(a’a)/T
mined by the expression
(E) = S(E) $_(E) @ JH dr (7 exp(iftd A2( )/4?1)
E)=SE)¢_(E), 7 = = TAAT,
o ¢ * \4min 0
whereS(E) is called theSmatrix[15,16. From the definition ;
of Egs.(7) and(6) the S matrix reads Xé)(‘p[— if dr)\(r)aTa], (14)
S[E)=%- LW aw (8 ~ i
=% ho Ce BTy ) whereh=%uT andt/T—t is a number of kicks represented

_ _ in continuous form. We take into account that the harmonic
It is known [17] (see also[15]) that the matrix)’ can be  oscillator, acting on the coherent state, changes its phase

parametrized as follows only, and the perturbation acts as a shift operator. Therefore,
the wave function in the momentas the form of the func-
/ _
_ (U\’l -7 uT ) 9) tional integral
T V1-7*T)°

t
V()= U(t)|a) = f H(d)\(f)/\/4wiﬁ)exp{i f dT)\Z(T)/4ﬁ}
T 0

where 7=i\1-B% while W;=-i%B™17, W,=—(i/A)WIB

=7", and §,=B. After the parametrization of Eq9), the S .

matrix reads X exp{ie f drdy(Mlay(7) + ak(f)]/zl
0

S(E)=B-1-B? U1 -B%/B% (10

e—iET -U

t
xexp[-(l‘e_ﬂ)f d751(7)|a)\(7)|2}|a)\(t)), (15
0

I1l. AUTOCORRELATION FUNCTION where

Now, we consider the autocorrelation function

t
a(t) = e a(t) = g0 { a+ie f dral(r)éf’w)] . (16)

R(&) =tr[ST(E + £12T)S(E - £/2T)] - t[ST(E)S(E)]. 0
(11)

t t
Bt:Jd o, T+\N7 :Jd QT -iyT/12+N(7)]. (17
The overbar in Eq.(11) denotes the average over the A 0 oy (7] 0 i Y (). 17

quasienerg)ET taken in the interval0, 27r]. Such an auto- _ o _ .
correlation function is related to the averaged cross sectiof€1°ting byA,=-iJ OdTal_(T)ah(T)' we obtain the following
[18]. The treatment of this form is analytically tractable, and ®XPr€ssion for the trace:

in what follows we perform the semiclassical analysis for the da ) d2a d\y(Dd\o(7)
correlation function. After simple calculations, we obtain ~ M(t) = Z(alu OUt)|a) = o I1 —ﬁ

T A1r

R(E’) - 2 e—iet tr[(UT)tUt _ Z(MT)t+1ut+1 + (UT)HZL{HZ]. - i "
! xXexp — f drA3(7) - k%(r)]}
(12) | 4h’0

Powerst of the evolution operatot/(T) can be formally X expl

* * 1
iIm(a, ay, —€By. —€B,) — “lon, - ay |2}
considered as the evolution operator for an arbitrary time L 2 ! z 2 n ’

t—namely,A4(T) =U(t). For the trace we take an integration [ t
over the coherent-state basis considered in the initial moment xexp|— (1 —e‘VT)J dTél(T)[|a)\l(T)|2+| a)\z(r)|2]/2:| .
t=0—namely, t---)=f(d?a/2m){al- - -|@). The action of the 0
evolution operator (18)
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In the limit h<1, the expression for the trac#t(t) is K=4ueT>e™>1. (23
strongly simplified and evaluated analyticaﬂy. Followif, It is convenient to present the action as a sum of two terms,
we perform the linear transform=2u+hv/2, No=2u | (=Tl af2677+T(), where the first term relates to the

—hv/2, where the Jacobian equalb. After the variables jnitial conditions and the second is a classical action with
change, we obtain from Eq¢16) and (17) the following zero initial conditiond(7=0)=0. It should be stressed that

semiclassical expressions for the second exponential in E(\}\'/hen condition(23) is fulfilled, the chaotic attractor takes

(18): place in a fixed and finite part of phase space and the clas-
&, (Day (D) - €B,. - €5, sical action is limited for any timer: €<Iy(7)<max(l,).
2 ! ! 2 Therefore, one can apply the mean-value theorem for inte-
vt T ) gration of the classical action in Eq(21). It gives
- fo defihu(7) + yT]e"a(n)|%, (19 Jola(Ddr~ [§8,(Dlg(ndr~tyT(l), where(l) is a character-

istic average action on the attractor, which is independent of
5 the initial conditionsa, «" as well. It is convenient to rewrite
. (20 it in the form {1)=(1)/(1+yT—€"?T). Integration of the first
term in Eq.(21) gives daf? for t>1/T. Using this crude
but reasonable estimation of E&@1), we obtain the follow-
ing expression for the trace:

t
oy, — |~ ’f drhu(n)e"%a()
0

Here e ¥""2a(7) is defined in Eqs(16) and (17) for »=0.
Now we perform integration over(7) and u(7) in the clas-
sical limit, neglecting the term of the order b? defined in _ @ o2 ™ _ -
Eg. (20). The integral over v vyields II278(u M)~ 2 exfl— 2laf* - yTHI)h] o« expl - yTKI)/h].
—hle™"™"?a(7)|?), and it leads to the exact integration oyer (24)

as well. Finally, we obtain, for Eq18), ) ] . i i
Inserting this result into Eq(12), we obtain an expression

d’a 1-e") (! . for the correlation function in the form
M@)=| —exp ———— | dréy(Dly(ra,a)
2m h Jo (1-eT)?
R(&) = - . (25)
~ [t . 1-exgd—i&-yT{l))
_(VT/h)f dTICI(T!ava ) ’ (21) . . . . .
0 It is worth mentioning that the autocorrelation functiB(€)

related to an averaged cross section corresponds to the Eric-

where we denote(7)=/1(7)/he”®? [see also Eqg16)and  SON fluctuation_z{see e.g[18)). Considerjng that are small
(17)] and () =Iy(7,a,a"). To evaluate the integrals in the [20], we take into account only the first two terms in the
exponential in Eq(21) we take into account that the dynam- €xpansion of the exponential in the denominator in @§).

ics takes place on a chaotic attractor. Classical dynamics OIFE;)!OVZ\/i_ngth[ZO.ZJJ VI‘(e g?lculz;%ez_trllqegcg/rrslgtignF_fun|<|:tion
the attractor is determined by the ma@, 6) — (1, ). In the IR in the normalized forniR|*=|R(€)[*/[R(O)*. Finally,

action-anglgl, 0) variables this map has a very complicatedWe arrive at the expression

form, because the perturbation in the classical counterpart of 5 1

the Hamiltonian(1) is a function of botH and 6. To obtain a R~ m

crude criterion of the existance of the chaotic attractor, we

explore the following approximation of the mé’p Where_g:eVT“). The_Lorentzian describes the distribution of
the Ericson fluctuations; see, e.fl8,20,21.

(26)

|e1= €71+ 26\l sin g, + €],
IV. BREAKING TIME

01= 0.+ QT+ 2uTl 4. (22 The important point of the consideration is that the term

. . L . of the order ofh>—namely,h?|fdru(n)a(7)|?>—is neglected.
Despite being an approximation of an exact analysig1pf This means that the quantum chaotic attractor is well de-

the map is detailed enough to obtain the local instability __ . . . ;
P scribed by classical equations of motion—namely, by map
condition in the form

(22)—and leads to the restriction on time which character-
izes the breaking time of classical-to-quantum correspon-
dence. It is the Ehrenfest time which specifies the validity
Since the minimum of the action on the attractor is ¢hjn ~ condition of the performed semiclassical approximation
> ¢, a rough estimation of the chaos control paraméter when theS matrix is ran<_jom Wlth. correqundlng correlations
can be obtained by a substitutibp~ €2. This corresponds to  ©f the matrix elements in the Ericson regime of £26). To

the limit cycle with the minimum phase-space volume of theevaluate the omitte®(h?) term in M(t), we take this into
order of €. In this case, the criterion of the chaotic attractoraccount at the integration ovetr) in Eq. (18). To this end

is we use the auxiliary expression

|06,41/96,~ 1| ~ 4ueT\1 €T =Ke"T > 1.
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exp[

2

dr(r)e"%a(7)

1

t
xexp{—i@Re{f drv(r)e‘VTT’za(r)}. (27)
0

ft
0
| d2ge2 2k
7h

Substituting Eqs(19), (20), and(27), into Eq.(18), one ob-
tains the following contribution to the trace:

2 2 o =2|62h f du(n)du(7)
Fm'fd e 1:[ 2m

t
xexp[— if dTV(T),LL(T):|
0

t
Xexp[iﬁj dTV(T)[|e_7TT/2a(T) +¢?- |§|2]} . (28
0

The functional integration ovewr(7) is exact and results in
the & function in w: I, 278(u—hje"%a(7)+&2-€?).
Hence the integration oveu(7) is also exact. Performing
these integrations we obtain from Eq&8) and (28) that

M :..ifdzaf dzge—z\az/ﬁ
ha?

tdr — . .
XEXIO[—J EG(T)ICI(Q,Q &€ ,T)} (29)
0

where the expression
(e’ £€ 1) = 14(QT - 2/¢2,e 7 ™2a(7)
+&e7% (1) + &)

is the classical action with shifted initial conditions and lin-
ear frequency. The amplitudesr) anda’(7) are determined
in Eq.(16), while G(7)=[yT+(1-€")8,(7)]. Expanding the
last exponential in Eq(29) in the Taylor series ir¥ and &
and taking into account that

(2/7h) J dPee 2 o= (R12)P*9\ pla 8y,

we obtain the trace of Eq29) in the form of the Taylor
expansion in the semiclassical paraméter

f (n+|)I el d

(2! ga"da™ o(Q
Xexp{— (1/h) f dTG(T)TC.(T,a,a*)] .
0

T),( 2)'(hi2)™!

(30)

The validity of Eq.(21), which is the zero order df, allows

one to neglect all the rest, which are higher ordeh in the
Taylor series of Eq(30). It is clear that if the criterio23) is

PHYSICAL REVIEW E 70, 066209(2004)

strongest contribution to the expansion for the same order of

his due to the second derivative®/ Jada’). Therefore, one

obtains the chain of derivatives

)5

A JE/_( ()
Jda 00,

0

(1)
(907._1

307._1
‘907“—2

a6,

13

From the classical mag22) and Eg.(23) we have that
(96,196,_1) ~Ke "> 1. Therefore, the chai(B1) yields

MD ke = Vil ex i K = 4T)]. (32)

The same expression is f@?(r)/ﬁa*. Finally, the strongest
contribution to the term of the first order bfis

Ig &I(T) (9|(T)

D(l,1
(1= h&a da’

exd2r(A-yD], (33

whereA=InK is the Lyapunov exponent. The validity con-
dition of the performed approximation B(I,1) <I1)/h?

~ (Ig4/h)2. It yields the validity condition for the time scale,
which is a breaking time between classical and quantum dy-
namics for the nonlinear kicked oscillator in the presence of
dissipation. It reads
A9 = In(1/h)/(A - yT). (34)
It follows from Eq. (23) that the denominator in E¢34) is
always positive, but it can be arbitrarily small. The situation,
when InK- T is very small, was called iji22] “the dying
attractor.” In this case(hd) is arbitrarily large but finitg(see
also[9)).

V. CONCLUSION

The semiclassical approximation for tisematrix is de-
veloped for the quantum chaotic attractor of the nonlinear
oscillator. An analytical expression for the breaking timé’i%
of classical-to-quantum correspondence is obtained. jFor
=0 it coincides with the Ehrenfest timg. The result of Eq.

(34) expresses the fundamental correspondence principle. It
establishes relations between the main parameters—namely,

the dimensionless semiclassical parameterthe global
chaos parametd{, and the dissipation ratg—which deter-
mine the quantum dynamics of the system with the non-
Hermitian Hamiltonian.

An important point of the semiclassical consideration is
that the Ehrenfest time is the result of the Taylor expansion;
namely, it results from the condition of the Taylor series
being convergent. This approach is absolutely different from
the standard semiclassical expansion which is an asymptotic
one. This has been the subject of wide discussion since the
seminal paper ofl]. (Also see a recent discussi¢n3,24
and references therejnThe essential difference between
these two semiclassical approaches is as follows. The semi-

fulfilled resulting in the existence of the chaotic attractor, theclassical consideration on the Ehrenfest time se@ler
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is a situation when quantum dynamics is well described byEhrenfest time. In this case, thsmatrix approach could be

the classical equations of motion. In this case, the Ehrenfestn effective way to study chaotic attractors where a possible
time scales logarithmically with respect to Conversely, Pphase-space structure, as a cantor set, could be studied in the
semiclassical Wentzel-Kramers-Brillouiw/KB) approxima-  framework of the semiclassical consideration on the finite
tion takes into account a quantum interference effect thatime scale of Eq(34) or beyond it.

leads to the breaking time scales as (@imversg power law

in h. It could be optained from Eq30) by resummatic_)n of _ ACKNOWLEDGMENTS
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