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An S-matrix approach is developed for the chaotic dynamics of a nonlinear oscillator with dissipation. The
quantum-classical crossover is studied in the framework of the semiclassical expansion for theS matrix. An
analytical expression for the breaking time, which is the Ehrenfest time for the dissipative system, is obtained.
A correlation function of theS-matrix elements is studied as well.
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I. INTRODUCTION

We consider here the semiclassical dynamics of a nonlin-
ear oscillator with dissipation. The main objective is to find
the breaking time of the quantum-classical crossover for the
dissipative system. In the absence of dissipation, the break-
ing time—namely, the Ehrenfest time—has been found[1] to
scale logarithmically with respect to the Planck constant":
t"=s1/LdlnsI0/"d, whereI0 is a characteristic action andL
is a Lyapunov exponent. It characterizes the exact classical-
to-quantum correspondence between the Hamiltonian equa-
tion of motion and the Ehrenfest ones[1–4]. The renewed
interest in this time scale is related to the extensive studies of
the chaotic scattering in cavities[6] of the Loschmidt echo
[7] and of the observation of an essential deviation from the
logarithmic scaling for systems with phase space structures
[8,9]. The nonlinear oscillator is explored to study the
quantum-classical correspondence[2–5,10,11] since the
Ehrenfest time scale was originally introduced in[1]. This
time describes a fast(exponential) growth of quantum cor-
rections to the classical dynamics due to chaos. In the pres-
ence of dissipation the breaking time differs fromt" since
the classical dissipation changes the local instability of tra-
jectories. The breaking timet"

sdd for a dissipative web map
has been obtained[9] by c-number projection of the Heisen-
berg equations on the coherent states basis. The same result
has been obtained in[12] by a different method in the frame-
work of a density matrix description. At timet"

sdd, the quan-
tum corrections are of the order of 1 and destroy the(semi)
classical behavior of the system. The subject of quantum
dissipative chaos grew out of the the pioneering work on
dissipative quantum maps[13], and various aspects of the
extensive studies on quantum dissipative chaos are reflected
in recent reviews[14] as well.

We show here, in the framework of anS-matrix approach
for the chaotic dynamics of the nonlinear oscillator with a
dissipation rateg, that the breaking timet"

sdd depends essen-
tially on the ratio between the dissipation rateg and the local
instability characterized by the Lyapunov exponentL.

II. S MATRIX

The Hamiltonian of the system can be written in the non-
Hermitian form

H = "vga†a + "2msa†ad2 − "esa† + addTstd. s1d

The creation and annihilation operators have the commuta-
tion rulefa,a†g=1. The complex frequencyvg=V− ig /2 de-
termines the effective frequencyv=fV2+g2/4g1/2 in the
presence of a finite width of the levelsg /2, andm is the
nonlinearity. The perturbation is a train ofd functionsdTstd
=on=−`

` dst−nTd, which is characterized by the amplitudee
and the periodT. The evolution of the wave function is gov-
erned by the quantum map

Cst + Td = UsTdCstd, s2d

where the evolution operatorUsTd over the periodT de-
scribes a free dissipative motion and then a kick. Since the
decay operator commutes with the free motion one, the dis-
sipation is applied first for sake of convenience of the nota-
tion. Therefore, the evolution operator is given by a product
of the unitary evolution operatorUsTd and the decay operator
B of the form

UsTd ; U = UB = eiesa†+ade−ifVTa†a+h̃sa†ad2ge−gTa†a/2. s3d

Here the dimensionless semiclassical parameterh̃="mT is

introduced. In what follows this parameter is small:h̃!1. To
describe the chaotic dynamics of an open system it is neces-
sary to construct anSmatrix. To this end we close the system
by means of the complementary conditions with an incident
wavef−std and an outgoing wavef+std. Therefore, the quan-
tum map(2) takes the new form[15,16]

SCst + Td
f+std

D = VSCstd
f−std

D = S U UW1

W2 S0
DSCstd

f−std
D , s4d

whereV is a unitary matrix:V†V=1. The operatorsW1, W2
and S0 are determined from dissipation by solving the
Schrödinger equation on the periodT:

Cst + Td = UCstd −
i

"
E

t+0

t+T+0

Uss− tdW̃1ss− Tdf−ss− Tdds.

s5d

The operator which makes the system closed is taken in the
form
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W̃1std = W1 o
n=−`

`

dst − nTd.

After the Fourier transform with respect to time we obtain
that the quantum map(4) takes the form

eiETcsEd = UcsEd −
i

"
UW1f−sEd,

f+sEd = W2csEd + S0f−sEd. s6d

A relation between the incident and outgoing waves is deter-
mined by the expression

f+sEd = SsEdf−sEd, s7d

whereSsEd is called theSmatrix [15,16]. From the definition
of Eqs.(7) and (6) the S matrix reads

SsEd = S0 −
i

"
W2

1

e−iET − UUW1. s8d

It is known [17] (see also[15]) that the matrixV can be
parametrized as follows

V = SUÎ1 −TT + − UT
T + Î1 −T +TD , s9d

where T= iÎ1−B2, while W1=−i"B−1T, W2=−si /"dW1
†B

=T †, andS0=B. After the parametrization of Eq.(9), the S
matrix reads

SsEd = B − Î1 − B2 1

e−iET − UUÎs1 − B2d/B2. s10d

III. AUTOCORRELATION FUNCTION

Now, we consider the autocorrelation function

RsEd = trfS†sE + E/2TdSsE − E/2Tdg − trfS†sEdSsEdg.

s11d

The overbar in Eq.(11) denotes the average over the
quasienergyET taken in the intervalf0,2pg. Such an auto-
correlation function is related to the averaged cross section
[18]. The treatment of this form is analytically tractable, and
in what follows we perform the semiclassical analysis for the
correlation function. After simple calculations, we obtain

RsEd = o
t

e−iEt trfsU†dtUt − 2sU†dt+1Ut+1 + sU†dt+2Ut+2g.

s12d

Powers t of the evolution operatorUsTd can be formally
considered as the evolution operator for an arbitrary time
t—namely,UtsTd;Ustd. For the trace we take an integration
over the coherent-state basis considered in the initial moment
t=0—namely, trs¯d=esd2a /2pdkau¯ ual. The action of the
evolution operator

Ustd = exp̂H− iE
0

t

dtfvga†a + "msa†ad2 − edTstdsa† + adgJ
s13d

on the basisual can be calculated analytically in the frame-
work of the semiclassical approximation[4,5]. Here expˆ
meansT ordering. Applying the Stratonovich-Hubbard trans-
formation [19] under theT ordering, one obtains, for the
nonlinear term in Eq.(13),

exp̂F− i"mTE
0

t

dtsa†ad2/TG
=E p

t

dlstd
Î4pih̃

expSiE
0

t

dtl2std/4h̃D
3exp̂F− iE

0

t

dtlstda†aG , s14d

whereh̃="mT and t /T→ t is a number of kicks represented
in continuous form. We take into account that the harmonic
oscillator, acting on the coherent state, changes its phase
only, and the perturbation acts as a shift operator. Therefore,
the wave function in the momentt has the form of the func-
tional integral

Cstd = Ustdual =E p
t

sdlstd/Î4pih̃dexpFiE
0

t

dtl2std/4h̃G
3 expFieE

0

t

dtd1stdfal
* std + alstdg/2G

3expF− s1 − e−gTdE
0

t

dtd1stdualstdu2Gualstdl, s15d

where

astd = e−iulstdastd = e−iulstdFa + ieE
0

t

dtd1stdeiulstdG , s16d

ulstd =E
0

t

dtfvgT + lstdg =E
0

t

dtfVT − igT/2 + lstdg. s17d

Denoting bybl=−ie0
t dtd1stdalstd, we obtain the following

expression for the trace:

Mstd =E d2a

2p
kauU†stdUstdual =E d2a

2p
E p

t

dl1stddl2std

4ph̃

3expF i

4h̃
E

0

t

dtfl1
2std − l2

2stdgG
3expFi Imsal2

* al1
− ebl1

− ebl2

* d −
1

2
ual1

− al2
u2G

3expF− s1 − e−gTdE
0

t

dtd1stdfual1
stdu2+ual2

stdu2g/2G .

s18d
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In the limit h̃!1, the expression for the traceMstd is
strongly simplified and evaluated analytically. Following[5],
we perform the linear transforml1=2m+ h̃n /2, l2=2m

− h̃n /2, where the Jacobian equals 2h̃. After the variables
change, we obtain from Eqs.(16) and (17) the following
semiclassical expressions for the second exponential in Eq.
(18):

al2

* stdal1
std − ebl1

− ebl2

*

< −E
0

t

dtfih̃nstd + gTge−gTtuastdu2, s19d

ual1
− al2

u2 < UE
0

t

dth̃nstde−gTt/2astdU2

. s20d

Here e−gTt/2astd is defined in Eqs.(16) and (17) for n;0.
Now we perform integration overnstd andmstd in the clas-

sical limit, neglecting the term of the order ofh̃2 defined in
Eq. (20). The integral over n yields pt2pd(m
− h̃ue−gTt/2astdu2), and it leads to the exact integration overm
as well. Finally, we obtain, for Eq.(18),

Mstd =E d2a

2p
expF−

s1 − e−gTd

h̃
E

0

t

dtd1stdIclst,a,a*d

− sgT/h̃dE
0

t

dtIclst,a,a*dG , s21d

where we denoteastd=ÎIstd / h̃e−iustd [see also Eqs.(16) and
(17)] and Istd; Iclst ,a ,a*d. To evaluate the integrals in the
exponential in Eq.(21) we take into account that the dynam-
ics takes place on a chaotic attractor. Classical dynamics on

the attractor is determined by the mapT̂sI ,ud→ sI ,ud. In the
action-anglesI ,ud variables this map has a very complicated
form, because the perturbation in the classical counterpart of
the Hamiltonian(1) is a function of bothI andu. To obtain a
crude criterion of the existance of the chaotic attractor, we

explore the following approximation of the mapT̂:

It+1 = e−gTfIt + 2eÎIt sinut + e2g,

ut+1 = ut + VT + 2mTIt+1. s22d

Despite being an approximation of an exact analysis of[1],
the map is detailed enough to obtain the local instability
condition in the form

u]ut+1/]ut − 1u , 4meTÎIte
−gT = Ke−gT . 1.

Since the minimum of the action on the attractor is minsItd
ùe2, a rough estimation of the chaos control parameterK
can be obtained by a substitutionIt,e2. This corresponds to
the limit cycle with the minimum phase-space volume of the
order ofe2. In this case, the criterion of the chaotic attractor
is

K = 4me2T . egT . 1. s23d

It is convenient to present the action as a sum of two terms,

Iclstd= h̃uau2e−gTt+ Ĩ clstd, where the first term relates to the
initial conditions and the second is a classical action with

zero initial conditionsĨ clst=0d=0. It should be stressed that
when condition(23) is fulfilled, the chaotic attractor takes
place in a fixed and finite part of phase space and the clas-
sical action is limited for any timet: e2, Iclstd,maxsItd.
Therefore, one can apply the mean-value theorem for inte-
gration of the classical action in Eq.(21). It gives

e0
t Ĩclstddt,e0

t d1stdĨ clstddt, tgTkĨl, wherekĨl is a character-
istic average action on the attractor, which is independent of
the initial conditionsa, a* as well. It is convenient to rewrite

it in the form kĨl=kIl / s1+gT−e−gTd. Integration of the first
term in Eq.(21) gives 2uau2 for t@1/gT. Using this crude
but reasonable estimation of Eq.(21), we obtain the follow-
ing expression for the trace:

Mstd < E d2a

2p
expf− 2uau2 − gTtkIl/h̃g ~ expf− gTtkIl/h̃g.

s24d

Inserting this result into Eq.(12), we obtain an expression
for the correlation function in the form

RsEd =
s1 − e−gTd2

1 − exps− iE − gTkIld
. s25d

It is worth mentioning that the autocorrelation functionRsEd
related to an averaged cross section corresponds to the Eric-
son fluctuations(see e.g.[18]). Considering thatE are small
[20], we take into account only the first two terms in the
expansion of the exponential in the denominator in Eq.(25).
Following [20,21] we calculate the correlation function
uRsEdu2 in the normalized formuRu2= uRsEdu2/ uRs0du2. Finally,
we arrive at the expression

uRu2 <
1

1 + sE/Gd2 , s26d

whereG=egTkIl. The Lorentzian describes the distribution of
the Ericson fluctuations; see, e.g.,[18,20,21].

IV. BREAKING TIME

The important point of the consideration is that the term

of the order ofh̃2—namely,h̃2uedtnstdastdu2—is neglected.
This means that the quantum chaotic attractor is well de-
scribed by classical equations of motion—namely, by map
(22)—and leads to the restriction on time which character-
izes the breaking time of classical-to-quantum correspon-
dence. It is the Ehrenfest time which specifies the validity
condition of the performed semiclassical approximation
when theSmatrix is random with corresponding correlations
of the matrix elements in the Ericson regime of Eq.(26). To

evaluate the omittedOsh̃2d term in Mstd, we take this into
account at the integration overnstd in Eq. (18). To this end
we use the auxiliary expression
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expF−
h̃2

2 UE0

t

dtnstde−gTt/2astdU2G
=

2

ph̃
E d2je−2uju2/h̃

3expF− i
Îh̃

2
Rej*E

0

t

dtnstde−gTt/2astdG . s27d

Substituting Eqs.(19), (20), and(27), into Eq.(18), one ob-
tains the following contribution to the trace:

2

h̃p
E d2je−2uju2/h̃E p

t

dmstddnstd
2p

3expF− iE
0

t

dtnstdmstdG
3expFih̃E

0

t

dtnstdfue−gTt/2astd + ju2 − uju2gG . s28d

The functional integration overnstd is exact and results in

the d function in m: pt2pd(m− h̃ue−gTt/2astd+ju2− uju2).
Hence the integration overmstd is also exact. Performing
these integrations we obtain from Eqs.(18) and (28) that

M =
1

h̃p2
E d2aE d2je−2uju2/h̃

3expF−E
0

t dt

h̃
GstdĪ clsa,a* ,j,j* ,tdG , s29d

where the expression

Ī cl„a,a* ,j,j* ,t… ; Icl„VT − 2uju2,e−gTt/2astd

+ j,e−gTt/2a*std + j*
…

is the classical action with shifted initial conditions and lin-
ear frequency. The amplitudesastd anda*std are determined
in Eq. (16), while Gstd=fgT+s1−e−gTdd1stdg. Expanding the
last exponential in Eq.(29) in the Taylor series inj and j*

and taking into account that

s2/ph̃d E d2je−2uju2/h̃jpj*q = Îsh̃/2dp+qÎp!q!dp,q,

we obtain the trace of Eq.(29) in the form of the Taylor

expansion in the semiclassical parameterh̃:

M =E d2a

2p
o
n,l

sn + ld!
sn!d2l!

]2n

]an]a*n

]l

]sVTdl s− 2dlsh̃/2dn+l

3expF− s1/h̃dE
0

t

dtGstdĪ clst,a,a*dG . s30d

The validity of Eq.(21), which is the zero order ofh̃, allows

one to neglect all the rest, which are higher order inh̃ in the
Taylor series of Eq.(30). It is clear that if the criterion(23) is
fulfilled resulting in the existence of the chaotic attractor, the

strongest contribution to the expansion for the same order of

h̃ is due to the second derivativess]2/]a]a*d. Therefore, one
obtains the chain of derivatives

]Īstd
]a

, Îh̃/I0S ]Īstd
]u0

D , Îh̃/I0S ]Īstd
]ut−1

DS ]ut−1

]ut−2
D¯ S ]u1

]u0
D .

s31d

From the classical map(22) and Eq. (23) we have that
s]u j /]u j−1d,Ke−gT.1. Therefore, the chain(31) yields

]Īstd
]a

, Îh̃/I0K
te−tgT = Îh̃/I0 expftsln K − gTdg. s32d

The same expression is for]Īstd /]a* . Finally, the strongest

contribution to the term of the first order ofh̃ is

DsI,Id =
I0

h̃

]Īstd
]a

]Īstd
]a* = expf2tsL − gTdg, s33d

whereL=ln K is the Lyapunov exponent. The validity con-

dition of the performed approximation isDsI ,Id, I0kIl / h̃2

,sIcl / h̃d2. It yields the validity condition for the time scale,
which is a breaking time between classical and quantum dy-
namics for the nonlinear kicked oscillator in the presence of
dissipation. It reads

t"
sdd = lnsIcl/h̃d/sL − gTd. s34d

It follows from Eq. (23) that the denominator in Eq.(34) is
always positive, but it can be arbitrarily small. The situation,
when lnK−gT is very small, was called in[22] “the dying
attractor.” In this caset"

sdd is arbitrarily large but finite(see
also [9]).

V. CONCLUSION

The semiclassical approximation for theS matrix is de-
veloped for the quantum chaotic attractor of the nonlinear
oscillator. An analytical expression for the breaking timet"

sdd

of classical-to-quantum correspondence is obtained. Forg
=0 it coincides with the Ehrenfest timet". The result of Eq.
(34) expresses the fundamental correspondence principle. It
establishes relations between the main parameters—namely,

the dimensionless semiclassical parameterh̃, the global
chaos parameterK, and the dissipation rateg—which deter-
mine the quantum dynamics of the system with the non-
Hermitian Hamiltonian.

An important point of the semiclassical consideration is
that the Ehrenfest time is the result of the Taylor expansion;
namely, it results from the condition of the Taylor series
being convergent. This approach is absolutely different from
the standard semiclassical expansion which is an asymptotic
one. This has been the subject of wide discussion since the
seminal paper of[1]. (Also see a recent discussion[23,24]
and references therein.) The essential difference between
these two semiclassical approaches is as follows. The semi-
classical consideration on the Ehrenfest time scalet" or t"

sdd
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is a situation when quantum dynamics is well described by
the classical equations of motion. In this case, the Ehrenfest
time scales logarithmically with respect toh̃. Conversely,
semiclassical Wentzel-Kramers-Brillouin(WKB) approxima-
tion takes into account a quantum interference effect that
leads to the breaking time scales as the(inverse) power law

in h̃. It could be obtained from Eq.(30) by resummation of
the Taylor expansion that corresponds to the semiclassical
consideration beyond the Ehrenfest time[5,11]. It is an es-
sential advantage of theS-matrix consideration that enables
one to consider a quantum chaotic attractor beyond the

Ehrenfest time. In this case, thisS-matrix approach could be
an effective way to study chaotic attractors where a possible
phase-space structure, as a cantor set, could be studied in the
framework of the semiclassical consideration on the finite
time scale of Eq.(34) or beyond it.
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